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Some terminology

» variables, objective function

» constrained optimization: (in)equality constraints, feasible set
» discrete vs. continuous optimization

» local vs. global optimization

» stochastic vs. deterministic optimization

> convex vs. nonconvex optimization

» strong, weak, isolated optima



The optimization tree

Source: http://www-fp.mcs.anl.gov/otc/Guide/OptWeb/index.html



Concepts of local optimization

Theorem (Taylor in 1D)

Given a function f : R +— R. Suppose that in an open interval
containing xg, f is continuously differentiable n + 1 times, then for
each x in this interval

n R (x
) = 3 T (o)t 4 Rusa (),
k=0 ’

where the error term Rpy1(x) satisfies

(K)
Rua() = = )t

for some £ € [xo, X).



Concepts of local optimization

Example:
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exp(x) ~ 1+ x + 3x2 + £x3 4+ Ix* around xo = 0



Concepts of local optimization

Basic idea:
Construct sequence {x} of points in feasible set such that

objective function f(xx) decreases (monotonically) as k — cc.

Two strategies:

» Line search

» descent direction fixed (per iteration): negative gradient,
Newton step, Quasi-Newton step, conjugate directions
» distance variable = one-dimensional subproblem

» Trust region

» direction variable
» maximal distance = size of trust region fixed (per iteration)



Conditions of optimality

Convention:
optimization = minimization

> necessary:

» x* stationary & "f’(x*) =0"
» Hessian positive semidefinite < "f”(x*) > 0"

» sufficient:

» Hessian positive definite < "f”(x*) > 0" (x* strong)
» f and feasibility region convex (x* global)



Scaling
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Rates of Convergence

» Q-convergence

» sublinear, superlinear
» quadratic
> ...

» R-convergence



Exercises

1. Are the following matrices positive definite or positive
semidefinite?

1 -10
(HA=| -1 2 1
0 -1 1



Exercises

2. Compute gradient and Hessian of the following functions.
Identify stationary points and check whether these are local optima.

(i) f(x) =100(x2 — x2)% + (1 — x1)?

(ii) f(x)=8x1 +12x0 + x — 2x3



Exercises

3. Calculate the n-th order Taylor expansion of the function f
around Xxp.

(i) f(x)=cosx, n=3,x =0

(i) f(x) = cos (%) n=2



Matrix Norms |

Definition

Let K be equal to C or R. A norm || - || on K"™" n € N, is called
matrix norm if it is submultiplicative, i.e. for two A,B € K"™*" it
holds

|AB| < [|A[l[|B].
Definition
A matrix norm || - || is consistent with a vector norm || - || on K" if
A< TTAJ ]

for every A € K™ and x € K".



Matrix Norms Il

Examples

» Frobenius norm:

IAlF= |32 lag? =tr(ATA)
P

» Induced norms (consistent!):

|Allp = sup [[Ax]|,

lIxllp=1



Condition of Matrix Inversion

Relative error:

Ix = Xllp ., lIb = bl
1l 16|,

> b, b: true, disturbed right-hand side
> X, X: true, erroneous solution

- ”A”p||A_1Hp3 condition number

For p=2:
_ g
k= [ A2 AT = Tm2

min



Exercises

4. Suppose that a function f of two variables is poorly scaled at
the solution x*. Write the Taylor expansion of f around x* and use
it to show that the Hessian V2f is ill-conditioned.



Exercises

5. What can you say about the convergence rates of the following
sequences?

x|

(i) xk =
(i) xe =1+ (%)2k
(i) xe = 4

2k
1
(iv) xx = <Z> , K even,
Xk_]_/k, k odd.



Exercises

6. Suppose that f is a convex function. Show that the set of global
minimizers of f is a convex set.



